
Chapter 34
Dynamic USBKEY System on Multiple
Verification Algorithm

Yixiang Yao, Jinghua Gao and Ying Gong

Abstract On account of the closed products and other defective products in the
current market, this paper puts forward and carries out the Dynamic USBKEY
System. This system is based on Multiple Verification Algorithm and is able to
verify the validity of users’ identity in a high-strength dynamic channel. Firstly,
the security of the entire system is based on the strength of the random key. The
overall design and the adopted algorithm are open. Secondly, it can solve the
problems within the channel, the verification method and the program’s self-
preservation. Thirdly, the system provides a more secure solution under the rapid
programming mode. The developers can apply the system on their own programs
through the opened cross-language interface. As a result, the development cycle
can be shortened and the security strength of their program can be improved.

Keywords USBKEY � One-time encryption � Network security � Software
security � Rapid programming

34.1 Introduction

The developers of application software have paid close attention to the encryption-
protection of commercial software. In order to protect intellectual property and
avoid piracy, a variety of encryption technologies have emerged. USBKEY, one of
these technologies, has taken over the market with its extraordinary superiority [1].

The current market is dominated by the third (programmable) and the fourth
generation (smart card) USBKEY systems. However, the seemingly high security
strength of these systems depends on encrypting the structure of the system itself
so that they are insecure when the structural information are let out or cracked. The

Y. Yao (&) � J. Gao � Y. Gong
Department of Information Security, Computer Science and Technology Institute,
Civil Aviation University of China, Tianjin, China
e-mail: bigyyx@gmail.com

W. E. Wong and T. Ma (eds.), Emerging Technologies for Information
Systems, Computing, and Management, Lecture Notes in Electrical
Engineering 236, DOI: 10.1007/978-1-4614-7010-6_34,
� Springer Science+Business Media New York 2013

297



main methods to crack the USBKEY are as follows: (1) cloning or copying, (2)
using the debugging tools to trace and decrypt, (3) using blocking procedure to
modify the communication between the software and USBKEY so as to acquire
the communication data. All these attacking methods are great threatens to the
USBKEY systems.

The USBKEY systems are usually used in protecting some specific software or
system like CAD and there is no commonly used USBKEY system that can adapt
to every user’s application. It is necessary to design a new type of USBKEY
system which is more secure, universally adaptable and easily installed.

In order to solve the problems described above, this paper comes up with a
Dynamic USBKEY System based on Multiple Verification Algorithm. In this
system, Multiple Verification is embodied in the diversity of authentication tokens
(such as the digital certificates) and the dynamic feature manifests in one-time
encryption used in the channel of transmission.

34.2 System Structure and the Principle of Module Design

The design of the USBKEY system depicted in this paper follows the principles
shown below: (1) it can be quickly put into use by developers (2) the function of it
can be expanded according to users’ demand (3) its structure is open and
the security strength is entirely based on the random key in transmission (4) the
security of channel (5) the safety of its components can be verified (6) the
authentication tokens have multiple dimensional patterns.

The entire USBKEY system includes four components: application programs
(CreateKey Application, which is designed to create keys, VerifyKey Application,
which is designed to verify the created keys, ConfMgr Application, which is designed
to manage configurations), USBKEY hardware, the database of the server and
PwdGuard Control (the security password control which is used as user interface).

Based on the four components, the system is divided into two states, namely
Creating State and Verification State. The Creating State is designed to initialize
the USBKEY and update the database. The Verification State mainly deals with
cross-validation and controls users’ action as is shown in Fig. 34.1. When a user
tries to operate the application and meet the verification point, the Verification
State will be triggered.

ApplicationServer

Local Program

Hardware

Verify PwdGuardUSBKEY

DataBase User Application

User

Fig. 34.1 The main structure of the Verification State

298 Y. Yao et al.



All communications of the system are based on their own communication
protocols. Therefore, users can develop more plug-ins according to their own
demand or adopt rapid programming by using PwdGuard.

34.2.1 Design of Dynamic Transmission Channel

It is generally believed that the security of transmission channel depends on the
complexity of the protocol [2]. On contrary, cryptographers believe that any
algorithm based on the complexity of protocols can be inducted and conjectured
through statistical regularities. However, there is one exception that no one-time
encryption can be cracked down even with infinite computing resources [3].

The one-time encryption scheme of the channel is based on the key exchange
algorithm under Public-Key Encryption Infrastructure (PKI) and a symmetric
encryption algorithm of higher security level. However, Man-In-The-Middle
Attacks exist in some of the key exchange algorithms so that the channel needs a
trust-worthy Certification Agency (CA) to issue certificates. Those CAs mentioned
are beyond the protocols [3]. Since the USBKEY hardware only communicates
with VerifyKey, the USBKEY cannot build a CA and is impossible to adopt a
complete procedure of exchanging keys directly. Here, we put forward a scheme
independent of certificates and CAs: assume that the Creating State is safe, PK and
SK, a pair of public and private keys created in the Creating State, are saved in
database and USBKEY respectively. Then the Creating State will use the PK and
SK directly to complete the key exchange.

For the sake of safety, we set a safety time threshold t. When a time period
exceeds t, the VerifyKey will generate a new pair of PKnew and SKnew which
will be updated to USBKEY by the old pair of PK and SK.

The procedure is divided into four phases of communications as below:

1. VerifyKey generates message p which will be encrypted into c by using the
following formulas then VerifyKey will send c to USBKEY.

k ¼ RandomðÞ ð34:1Þ

c ¼ Ek pð Þ ð34:2Þ

2. USBKEY returns ACK after receiving the message.
3. After receiving ACK, VerifyKey changes k to k’, then send it to USBKEY.

k0 ¼ PKA k; SKð Þ ð34:3Þ

34 Dynamic USBKEY System on Multiple Verification Algorithm 299



4. USBKEY gets k and p via decryption.

k ¼ PKA k0; PKð Þ ð34:4Þ

p ¼ Dk cð Þ ð34:5Þ

Then v, the data need to be sent back, will be encrypted into v’ and then send
back to VerifyKey.

v0 ¼ Ek vð Þ ð34:6Þ

Hereto, the entire procedure of the communications completes.
Besides, we use SSL directly to guarantee the communications between the

database and the VerifyKey.
In order to fight against reply attacks, we need to use time-stamps with timeout

range in all data packets. Here, we leave out unnecessary details.

34.2.2 The Design of Multiple Verification Algorithm

The traditional mode of token protection is possible to be cracked down. There-
fore, it is essential to design a new kind of multi-dimensional transformation
method for tokens.

In Creating State, CreateKey needs to produce several units of various verifi-
cation tokens Ti. For all kinds of tokens, they have their own different ways to
transform. In other words, Ti’ = F(Ti) in which F may be a one-way function.
Then Ti and Ti’ will be saved respectively in the USBKEY and the database.

Assume X{T} is the sample space of the token in traditional protection mode,
X{F} is the sample space for the verification algorithm. Computed by this algo-
rithm, the sample space will become X{Ti} (i = 1, 2…,n). The sample space
computed by the verification algorithm will become X{Fj} (j = 1, 2,…,m). X, Y is
random variables, then

Xn

i¼ 1

PðX ¼ TiÞ ¼ PðX ¼ TÞ ð34:7Þ

Xm

j¼ 1

PðY ¼ FjÞ ¼ PðY ¼ FÞ ð34:8Þ

So under the protection of Multiple Algorithm, the possibility of tokens which
may be cracked down is:

PðX ¼ Ti; Y ¼ FjÞ ¼ PðX ¼ TiÞPðY ¼ FjÞ ¼
1

nm
PðX ¼ T; Y ¼ FÞ ð34:9Þ

300 Y. Yao et al.



Besides, tokens cannot be saved continuously in the memory and they can only
be stored separately though self-defined structure of data.

34.2.3 The Design of Mutual Verification
and Self-Protection

Since the USBKEY components may be replaced or modified, Mutual Verification
is particularly important. Before transmission, both sides which are reciprocally
the subject and the object should verify each other through hash verification. The
information can only be transmitted when the verifications are passed.

The system also needs to prevent itself from decompiling and tracing. Without
the anti-tracing technologies, the software will be exposed by the cracker using
debugger and monitor [4]. The common protective measure in the market is
packing. We recommend the high strength virtual machine packer which has a
more remarkable protective ability.

In addition, we can adopt self-made methods to protect the core codes. For
example, the common 0xCC breakpoint can be detected by acquiring the machine
code during execution and we can also use the debugging mark in the memory of
Windows to judge or avoid debugging etc.

34.3 Module Design

34.3.1 The Design of Program Module

Here is an overview of the design for CreateKey and VerifyKey. ConfMgr is used
to manage the configuration. The related parameters can be redefined so as to be
compatible with different environment.

1. CreateKey is responsible for Creating State. The main functions include: cre-
ating, transforming and saving the verification token, generating and storing the
initial PKI parameters, writing the USBKEY and updating the database.

2. As the center of entire Verification State, VerifyKey is transparent to users.
When PwdGuard receives a request, the Verify will transfer the request to
USBKEY which will return the ID and the relevant token T. According to the
ID, a duplication of verification token T’ will be granted from the database.
Finally, VerifyKey will compare T’ and F(T) and use the result to generate
execution event which will be executed by PwdGuard.

34 Dynamic USBKEY System on Multiple Verification Algorithm 301



34.3.2 The Design of Hardware Module

As the carrier of the system’s hardware, USBKEY is responsible for storing the
authentication tokens and assisting VerifyKey to complete verification process. As
is shown in Fig. 34.2, when data arrives at the communication interface, it should
be decrypted and decoded by Cryptographer and Protocol Explanation respec-
tively. Then the data has three routes: (a) acquiring a random number (b) being
created or acquiring a verification token (c) calling other functions. Particularly,
the operations of verification token and function must go through internal memory
and then return. Here, the operation of verification token means the creation of
verification token (Creating State) and the random reading of verification token
(Verification State). While the function is used in two ways: (a) part of the function
(used to running in VerifyKey) is executed in the USBKEY and it will return the
result (b) the function only used by USBKEY itself.

34.3.3 The Design of Interface Module

The Interface Module is used to connect the user’s applications, its function
includes monitor and control the user’s operation. Based on the ActiveX control,
we designed a special InputBox to fight against detecting of asterisk password and
KeyLogger. It also has the function of verification.

1. Measures to prevent asterisk password from being detected: under the Windows
system, the password InputBox only changes password into asterisk. However,
the cracker can use the Handle of the InputBox to get the password. Our new
control is designed to avoid this problem by caching the password indirectly
and forging a fake display, as is shown in Fig. 34.3a.

2. Ways to prevent the KeyLogger: Message Hook is a mechanism provided by
Windows and it can allow the system to monitor the processing of Message [5].

Communication Interface

Cryptographer

Random

Protocol Explaination

Token Function

EEPROM or MemorySK

Fig. 34.2 The schematic of hardware module

302 Y. Yao et al.



When a new Hook is created, it will be placed at the top of the Hook Chain. As
shown in Fig. 34.3b, we can load and unload Hooks repeatedly in small
intervals to ensure that all Messages (the Messages of WH_KEYBOARD_LL
and WH_DEBUG) will reach the top of the Hook Chain before being
transmitted.

34.4 Experimental Tests and Comparison

We installed the database into a testing server and the other components in a
common PC. Limited by the space of this paper, we only give the screenshots of
the data flow and the detecting result of the asterisk viewer. In particular, Fig. 34.4
(left) shows the data flow in the transmission channel when the system is doing the
same operation.

Table 34.1 presents the comparison between the USBKEY system introduced
in this paper and a certain one from current market.

Insert or modify the password 

Get modification position

Add the signs (*) to the input box 
according to the number of the password 

in the memory

Update the 
password

in the 
memory

Extract the character to the memory

Block the message

Intercept the message

Extract the message

yes

no

Transfer to the hook on the chain

Windows message

(a) (b)

Fig. 34.3 Two processes of PwdGuard. a The process of anti-asterisk detect. b The process of
anti-keylogger

Fig. 34.4 Data flaw in transmission channel and Asterisk Viewer’s detecting result

34 Dynamic USBKEY System on Multiple Verification Algorithm 303



34.5 Conclusion

In this study, researchers came up with the theory of Dynamic USBKEY System
on Multiple Verification Algorithm which can reduce the threats of cracking and
eavesdropping. Through the protocol’s decoupled structure, self-verification and
mutual verification, the system achieves custom extension while ensuring safety.
Developers can deploy the system into their own applications through simple
configuration. How to guarantee the safety of the system when the server is
cracked down will be future top priority in researches.

Acknowledgments This work is supported by National Training Programs of Innovation and
Entrepreneurship for Students No. 201210059060. We wish to thank Prof. Guo Li for his valuable
instructions on earlier drafts of this paper.

References

1. Li, M., Shen, T.: Design of a USB software dog. Chin. J. Electron Devices 29(1), 205–208
(2006)

2. Xu, M., Zhuge, Z.: Reliability analysis and design of a USB softdog. Chin. Mech. Electr. Eng.
Mag. 24(7), 47–49 (2007)

3. Schneier, B.: Applied cryptography-protocols, algorithms, and source code in C, 2nd edn.
China Machine Press, Beijing (2004)

4. Duan, G.: Encryption and decryption, 3rd edn. Chinese Publishing House of Electronic
Industry, Beijing (2008)

5. Richter, J.: Programming application for Microsoft Windows, 4th edn. Microsoft Press,
Washington (2000)

Table 34.1 Function comparisons between USBKEY systems

Function Testing system Comparison system

Channel transmission Different data flow each time. When execute the same function,
the data flow is same.

Program modification No disassembling information in
OllyDbg1.1.

Disassembling the core code is
possible.

Password detecting The password cannot be cracked
down through password
viewer and KeyLogger.

The password can be cracked
down.

Customizing
components

Each part can be developed
independently and allows
self-defined interface.

Cannot be extended

System structure Open, the security is based on
random key.

Confidential, part of the security
strength is based on protocols

304 Y. Yao et al.


	34 Dynamic USBKEY System on Multiple Verification Algorithm
	Abstract
	34.1…Introduction
	34.2…System Structure and the Principle of Module Design
	34.2.1 Design of Dynamic Transmission Channel
	34.2.2 The Design of Multiple Verification Algorithm
	34.2.3 The Design of Mutual Verification and Self-Protection

	34.3…Module Design
	34.3.1 The Design of Program Module
	34.3.2 The Design of Hardware Module
	34.3.3 The Design of Interface Module

	34.4…Experimental Tests and Comparison
	34.5…Conclusion
	Acknowledgments
	References


